If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+90x+225=0
a = 6; b = 90; c = +225;
Δ = b2-4ac
Δ = 902-4·6·225
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-30\sqrt{3}}{2*6}=\frac{-90-30\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+30\sqrt{3}}{2*6}=\frac{-90+30\sqrt{3}}{12} $
| 2.5-3.7x=8-(4x+6) | | f-22=242 | | 32(-12=2x)=8x6 | | 4-5n=5+2n | | 17x-9+11x-7=180 | | 2(2x5)=20 | | j+328=662 | | (x-1)5+16(2x+3)=(2X-7)3-X | | Y=-3x-2Y=4x+19 | | 3=-9-4x2 | | 3.4+v/8=-9.4 | | -492=6(10x+18) | | (x+5)2-5=15 | | 149=u+-738 | | 13.02=0.6h | | 2^{3x+1}=28 | | 3.4+v8=−9.4 | | t3+10=14 | | -492=6(10x+18 | | 10+(5x4)=30 | | 10(n+4)-4(n-2)=3(n-1)+2(n-3) | | Y=25x=90 | | q-269=20 | | -3x-2=4x+19=Y | | (10y-10)+(19y-13)=180 | | 315=9m | | Y=-3x-2=4x+19 | | 5(-6x-18=-270 | | 5x-9=2x-27 | | 57=c-349 | | Y=-3x-2=Y=4x+19 | | 24x-56x=-6x-42+4 |